Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Xiang Li

Chemistry and Chemical Engineering Department, Pingdingshan Institute of Technology, Pingdingshan 467000, People's Republic of China

Correspondence e-mail:
lixiang_acta@yahoo.com.cn

## Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
$R$ factor $=0.051$
$w R$ factor $=0.126$
Data-to-parameter ratio $=13.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
## 4-[2-(3-Ethyl-4-methyl-2-oxo-3-pyrrolidine-1-carboxamido)ethyl]benzenesulfonamide

In the title molecular structure, $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$, the dihedral angle between the essentially planar 2,5 -dihydro- $1 H$-pyrrole and benzene rings is $20.8(2)^{\circ}$. In the crystal structure, molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds $[\mathrm{H} \cdots \mathrm{O}=2.07(3)-2.57(3) \AA]$ to form a two-dimensional network.

## Comment

The title compound is an intermediate of glimepiride (Hoe490), which is an oral antidiabetic drug (Kirchheiner et al., 2005). The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles (Table 1) are in agreement with values reported for glimepiride (Iwata et al., 1997). The N-S bond length is 1.603 (2) $\AA$, in good agreement with the mean value of $1.600 \AA$ reported by Allen et al. (1987). The deviation of atom C 5 from the $\mathrm{C} 1-\mathrm{C} 5 / \mathrm{C} 7 / \mathrm{C} 8 / \mathrm{O} 1 / \mathrm{O} 2 / \mathrm{N} 1 / \mathrm{N} 2$ plane is 0.056 (3) $\AA$. Atoms C10 and S1 are approximately in the plane of the benzene ring ( $\mathrm{C} 11-\mathrm{C} 16$ ), the largest deviation being 0.018 (2) $\AA$ for atom S1. The dihedral angle between the essentially planar 2,5 -dihydro- 1 H -pyrrole and benzene rings is 20.8 (2) ${ }^{\circ}$. In the crystal structure, molecules are linked by N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a two-dimensional network (Fig. 2 and Table 2).

(I)

## Experimental

The title compound was prepared from 3-ethyl-4-methyl-2-oxo-3pyrrolidine $(0.01 \mathrm{~mol})$ and 2-phenylethyl isocyanate ( 0.01 mol ),


Figure 1
The molecular structure of (I), with displacement ellipsoids drawn at the $40 \%$ probability level. H atoms are shown as small spheres.
which were introduced with cooling and agitation into chlorosulfonic acid $(0.01 \mathrm{~mol})$. The mixture was poured on to ice, whereupon the sulfochloride was separated and treated with concentrated ammonia $(20 \mathrm{ml})$. The sulfonamide was suction-filtered and recrystallized from ethanol (Weyer et al., 1980) (yield $86 \%, 3.02 \mathrm{~g}$ ). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a methanol solution of the title compound at room temperature for two weeks.

## Crystal data

$\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$
$M_{r}=351.42$
Monoclinic, $P 2_{1} / n$
$a=8.2325(11) \AA$
$b=14.2854$ (18) $\AA$
$c=14.8231$ (19) $\AA$
$\beta=93.474$ (2) ${ }^{\circ}$
$V=1740.1(4) \AA^{3}$

## Data collection

Bruker SMART CCD area-detector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.900, T_{\text {max }}=0.930$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.126$
$S=1.10$
3058 reflections
227 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.341 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K } \alpha \text { radiation } \\
& \mu=0.21 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Block, colorless } \\
& 0.51 \times 0.41 \times 0.35 \mathrm{~mm}
\end{aligned}
$$

8711 measured reflections 3058 independent reflections 2675 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=25.0^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0552 P)^{2}\right. \\
& \quad \quad+0.8277 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.26 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: } \text { SHELXL97 } \\
& \text { Extinction coefficient: } 0.0173 \text { (16) }
\end{aligned}
$$

Table 1
Selected geometric parameters ( $\left({ }^{\circ},{ }^{\circ}\right.$ ).

| S1-O3 | $1.4261(19)$ | $\mathrm{N} 1-\mathrm{C} 1$ | $1.383(3)$ |
| :--- | :--- | :--- | :--- |
| S1-O4 | $1.4263(18)$ | $\mathrm{N} 1-\mathrm{C} 8$ | $1.399(3)$ |
| S1-N3 | $1.603(2)$ | $\mathrm{N} 1-\mathrm{C} 4$ | $1.457(3)$ |
| S1-C14 | $1.767(2)$ | $\mathrm{N} 2-\mathrm{C} 8$ | $1.332(3)$ |
| O1-C1 | $1.227(3)$ | $\mathrm{N} 2-\mathrm{C} 9$ | $1.457(3)$ |
| $\mathrm{O} 2-\mathrm{C} 8$ | $1.224(3)$ |  |  |
| O3-S1-O4 | $119.68(12)$ | $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$ | $110.75(18)$ |
| N3-S1-C14 | $107.96(11)$ | $\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 9$ | $121.3(2)$ |

Table 2
Hydrogen-bond geometry ( $\left(\AA^{\circ}{ }^{\circ}\right.$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$ | 0.86 | 2.08 | $2.742(3)$ | 134 |
| $\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{O} 1^{\mathrm{i}}$ | $0.80(3)$ | $2.57(3)$ | $3.193(3)$ | $135(3)$ |
| $\mathrm{N}^{2}-\mathrm{H} 3 B \cdots$ O $^{\mathrm{ii}}$ | $0.79(3)$ | $2.07(3)$ | $2.851(3)$ | $168(3)$ |

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$.


Figure 2
Partial packing plot of (I) (Spek, 2003), showing hydrogen bonds as dashed lines.

The positions and isotropic displacement parameters of the amino H atoms (H3A and H3B) were refined independently. All other H atoms were placed in calculated positions ( $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$ ) and were constrained to ride on their parent atoms with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$, or $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

## References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Iwata, M., Nagase, H., Endo, T. \& Ueda, H. (1997). Acta Cryst. C53, 329-331.
Kirchheiner, J., Roots, I., Goldammer, M., Rosenkranz, B. \& Brockmoller, J. (2005). Clin. Pharmacokinet. 44, 1209-1225.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Weyer, R., Geisen, K., Hitzel, V., Geisen, K. \& Regitz, G. (1980). US Patent 4 379785 (CA: 95,168964c).


[^0]:    © 2006 International Union of Crystallography All rights reserved

